
Securing
Kubernetes
Checklist

1 https://www.zdnet.com/article/technology-containers-short-lifespans-are-getting-even-shorter/

Kubernetes has become the de facto operating system of the cloud. This
rapid success is understandable, as Kubernetes makes it easy for developers
to package their applications into portable microservices. However,
Kubernetes can be challenging to operate. Teams often put off addressing
security processes until they are ready to deploy code into production.

Kubernetes requires a new approach to security. After all, legacy tools and
processes fall short of meeting cloud-native requirements by failing to
provide visibility into dynamic container environments.

Fifty-four percent of containers live for five minutes or less1, which makes
investigating anomalous behavior and breaches extremely challenging.

One of the key points of cloud-native security is addressing container
security risks as soon as possible. Doing it later in the development life
cycle slows down the pace of cloud adoption, while raising security and
compliance risks.

The Cloud/DevOps/DevSecOps teams are typically responsible for security
and compliance as critical cloud applications move to production. This
adds to their already busy schedule to keep the cloud infrastructure and
application health in good shape.

We’ve compiled this checklist to provide guidance on choosing your
approach to security as you ramp up the use of containers and Kubernetes.

https://www.zdnet.com/article/technology-containers-short-lifespans-are-getting-even-shorter/

Let’s first take a glance at a Kubernetes cluster to
understand which elements you need to protect.

The first area to protect is your applications and
libraries. Vulnerabilities in your base OS images for
your applications can be exploited to steal data,
crash your servers or scale privileges. Another
component you need to secure are third-party
libraries. Often, attackers won’t bother to search
for vulnerabilities in your code because it’s easier
to use known exploits in your applications libraries.

The next vector is the Kubernetes control plane
- your cluster brain. Programs like the controller
manager, etcd or kubelet, can be accessed via the
Kubernetes API. An attacker with access to the API
could completely stop your server, deploy malicious
containers or delete your entire cluster.

Breaking down Kubernetes
security risk

SECURING KUBERNETES CHECKLIST

Additionally, your cluster runs on servers, so access to
them needs to be protected. Undesired access to these
servers, or the virtual machines where the nodes run, will
enable an attacker to have access to all of your resources
and the ability to create serious security exposures.

Now that we know what to secure, let’s get into the
details and review the framework for approaching
Kubernetes Security:

Container

Pod

Container Runtime

Node

Cluster

APPAPP

Control Plane
Components

kubelet

Master Node

kube-apiserver

A

B

C

D

Access via Kubernetes API Proxy etcd API

Exploit vulnerability in apps or 3rd party libraries

Access via API

Access to the servers or virtual machines

A

B

C

D

What is it: A CI/CD automates building, testing and
publication of your code. An image scanner checks
the contents of your container images.

Benefits: By scanning your images in a CI/CD
pipeline, you can block threats before they reach
your production environment. At this level, you can:

Approach: Add an extra step in your pipeline for the image scanner after building the image, and before publishing it to
the registry. Fail the pipeline if the image scanner fails, thus blocking the image from being published.

Inline image scanning is a variant, where the actual scanning is done in your pipeline. Only some metadata is sent to the
backend for validation against your policies. This removes the necessity of an intermediate staging repository, saving you
from accidentally leaking credentials and protecting your privacy.

Extra checks can be placed during the image life cycle. For example, enable Kubernetes admission controller to prevent
risky or unscanned images from being deployed. Going one step further, you could perform image scanning with the
admission controller as well.

To learn more about how Sysdig Secure provides image scanning in CI/CD pipelines and registries,
read more here: https://sysdig.com/products/kubernetes-security/image-scanning/.

1

Securing container images
in a CI/CD pipeline

 • Check your application, its libraries and other files for
well-known vulnerabilities.

 • Analyze the metadata to detect misconfigurations like
exposed insecure ports, running as privileged (root) user, or
exposed credentials.

 • Define custom checks, like package blacklisting or detecting
wrong file permissions.

Then, you can notify your developers to fix the issues and even
block the image from reaching production.

SECURING KUBERNETES CHECKLIST

Code

Staging

Production

Commit

Trigger Pipeline

Build

Publishes image

1

1 Pulls Image

Scans

Sends report

Publishes if Build OK

5

2 6

3 7

4 8

2

8

4

5

6

3

7

https://sysdig.com/products/kubernetes-security/image-scanning/
https://sysdig.com/blog/image-scanning-admission-controller/
https://sysdig.com/blog/image-scanning-admission-controller/
https://sysdig.com/products/kubernetes-security/image-scanning/

2

What is it: Kubernetes control plane is the brain
of your Kubernetes cluster. It manages all of your
cluster resources, can schedule new pods and can
read all of the secrets stored in the cluster.

Benefits: The control plane controls your cluster;
securing it will prevent a malicious user from
extracting information, crashing your infrastructure
or scheduling pods with access to the parent node.

Approach: Isolate the cluster network, secure the
API and audit kubectl commands.

Control plane components communicate via the Kubernetes
API, and kubectl instructions also translate into API calls.
To secure it:

 • Check the kubelet config: Disable anonymous-auth, set a
client-ca-file, ensure authorization-mode delegates
to the API server, and disable the read-only-port.

 • Enable NodeRestriction in your API so kubelets are
only allowed to perform modifications in their own node.

 • Enable authorization via RBAC.

Securing the Kubernetes
Control Plane

SECURING KUBERNETES CHECKLIST

C
lu

ster

kubelet

container runtime

kube-proxy

Node

kubelet

container runtime

kube-proxy

Node

kube-apiserver

kube-dnsscheduler
controller
manager

etcd

Kubernetes Master

$kubectl

https://sysdig.com/blog/kubernetes-security-rbac-tls/

3
SECURING KUBERNETES CHECKLIST

 • Create users, accounts, roles and binding.

 • Enable RBAC.

 • Follow a least privileged strategy, restricting access
to only the resources and actions strictly required
for each role.

What is it: A way to link Kubernetes subjects
(e.g., human users, software, kubelets) to the
actions (get, watch, list, etc.) they are allowed
to perform over Kubernetes entities (e.g., pods,
secrets, nodes).

Benefits: By limiting access to resources, a
compromised account won’t expose the whole
cluster, but rather a small part.

Approach:

Reduce risk with Role-Based
Access Control

role binding

role binding

cicd-role

webapp-role

webapp-sa

api-sa

Roles

Users

Service Accounts Software

CI/CDdeploys using

verbs

resources

API groups

get, list, watch, create, etc.

Daemon Sets, Deployments, pods, etc.

apps, extensions, policy, etc.

https://sysdig.com/blog/kubernetes-security-rbac-tls/

4

 • Apply your PSPs before enabling them.

 • Enable the PodSecurityPolicy Admission
Controller in the kubeAPI configuration.

 • Recycle your Pods that are under the
control of the PSPs.

 • Monitor closely and fix/add PSPs as
needed.

What is it: A cluster-level resource that
controls the actions a pod can do or
what resources it can access. Policies
are checked before a pod is scheduled
by the PodSecurityPolicy (PSP)
admission controller.

Benefits: Prevent threats without
impacting performance at runtime by
enforcing least privilege access for pods
in your clusters. Preventative controls
such as disallowing running privileged
containers, restricting resources, or
limiting access to volumes can be
enforced at this level.

Approach: Deploy PSPs and follow a
least privileged strategy.

Deploying PSPs usually involves the following:

Securing Pods with Pod
Security Policies

SECURING KUBERNETES CHECKLIST

PSP
Prevent pods from starting
Control privilege escalation

Restrict resources:
• Namespaces
• Network
• Filesystem

Restrict users and groups
the pod can run as

Limit access to volumes
Other parameters:
• Runtime profiles
• Read-only root filesystems

https://sysdig.com/blog/psp-in-production/
https://sysdig.com/blog/psp-in-production/

5

What is it: Managing security risk at runtime in
containers and Kubernetes environments. Runtime
security detects abnormal behavior that could
indicate a container has been compromised.

Benefits: Flag owners and respond quickly to
newly discovered vulnerabilities before they are
exploited. Detect and remediate attacks when they
happen, before they cause major damage. Protect
from software bugs or misconfigurations that
cause erratic behavior and resource leaking.

Approach: Scan continuously so you can detect
issues as soon as possible. Also, place automatic
incident responses so action can occur right away.
Finally, capture forensic data when an incident
happens so you can investigate the root cause and
prevent it from happening again. Let’s expand a bit
on each of those strategies.

Runtime vulnerability reporting: After an image is
initially scanned, new vulnerabilities may be found
on it, or your policies may change. You need to
keep scanning them to ensure that they’re secure
over time. Some image scanners would require
you to do a full re-scan each time, others will save
the metadata and will be able to warn you on new
issues without a new scan. You need to be able to
map critical vulnerabilities (e.g., CVE’s with a fix
available in images that are running longer than 30
days) to specific applications and identify teams
responsible to fix them. This requires mapping CVE’s
back to the Kubernetes asset landscape (specific
namespaces, deployments, clusters, pods, etc.).

Securing workloads
at runtime

SECURING KUBERNETES CHECKLIST

Abnormal behavior detection: Is your container doing what
it’s supposed to do? Is it accessing files it shouldn’t? Does
it have strange network connections? Did anyone spawn a
terminal shell? By monitoring your container’s activity you
can detect abnormal behavior.

You’ll need instrumentation to detect these issues. Does your
instrumentation cover just your apps, or also the system calls?
The more data you have, the more behaviors you’ll be able
to detect. How many resources does your instrumentation
need? Some solutions will need a lot of memory, while others
will tax your CPU.

Falco is the de facto Kubernetes threat detection engine, it
detects unexpected application behavior and alerts on threats
at runtime. Falco captures system calls using eBFP (among
other sources), which provides visibility into runtime system
activity with Kubernetes application context, and also makes
it ready for high performance production environments.

Creating rules for all of your pods can be a time consuming
task. Having a wide library of out of the box rules available
can make a difference here. With so many images. it’s easy
to miss something, so being able to use machine learning to
profile expected behaviours is a nice safety net.

Automatic incident response: React to incidents right away
before they become a bigger issue. Nothing is faster than an
automatic response. Critical incidents will require you to stop
the affected pods, but for other incidents, a notification is
enough. Being able to notify the relevant people for further
investigation through the appropriate channels is crucial.

Auditing and forensic tools: You need to capture all of the
information you possibly can around an incident since, by the
time you’re going to investigate it, the containers may already
be gone. Besides the captures, you’ll need a way to browse
the data so you can correlate events and find the source of the
issue faster. For example, you should be able to identify unusual
network activity, correlate it to shell commands executed
around that time, and see what files changed.

https://falco.org/

Steps to Securing
Kubernetes

Opensource (DIY) Sysdig Secure (Turnkey)

Securing container images
in CI/CD pipelines

Open source tools like Clair,
Anchore, provide image
scanning and can be integrated
into your CI/CD pipeline.

Sysdig Secure embeds scanning into the CI/CD pipeline. It
provides out of the box policies covering best security practices
and compliance standards.

Prevents risky images from ever being deployed (via Kubernetes
admission control).

You can scan directly in the pipeline and prevent risky images
from going into the registry.

You get out of the box integrations and alerts with tools like
Slack, SNS, PagerDuty, etc.

Securing Kubernetes
control plane

Validate cluster configuration
is compliant based on
CIS Benchmarks for
Kubernetes (kube-bench).

K8s-security-configwatch can
review the changes in your
Kubernetes config files, and
highlight those that can affect
the security of the cluster.

Use Falco to detect
unexpected Kubernetes
control plane activity.

Gain deep visibility across hundreds of thousands of nodes
with out-of-the-box dashboards to monitor Kubernetes control
plane activity.

Detect anomalous activity faster with curated Falco rules
based on Kubernetes audit logs, with automatic remediation,
alerting and notification integrations.

Schedule continuous compliance assessments and generate
reports based on CIS benchmarks for Kubernetes.

Reduce risk with role-based
access control (RBAC)

Open Policy Agent (OPA) gives
you a high-level declarative
language to author and enforce
policies across your stack.

Leverage RBAC manager
to simplify authorization
in Kubernetes.

Sysdig Secure helps you establish federated access control
across different teams within your organization.

Administrators can limit the exposure of data to those who
actually need it.

Kubernetes Security
Options: DIY v/s Turnkey

SECURING KUBERNETES CHECKLIST

https://sysdig.com/products/kubernetes-security/
https://github.com/quay/clair
https://github.com/anchore/anchore-engine
https://github.com/falcosecurity/falco
https://github.com/open-policy-agent/opa
https://github.com/FairwindsOps/rbac-manager

Copyright © 2020 Sysdig, Inc. All rights reserved. CL-004 Rev. A 5/20

Steps to Securing
Kubernetes

Opensource (DIY) Sysdig Secure (Turnkey)

Securing pods with security
policies

Gatekeeper is a validating
webhook that enforces
CRD-based policies executed
by Open Policy Agent.

kube-psp-advisor is a tool
that makes it easier to create
K8s Pod Security Policies
(PSPs) from either a live
K8s environment or from a
single .yaml file containing
a pod specification.

Save time blocking runtime threats automatically generating
and validating the least-privilege pod admission policy for your
workloads.

Securing workloads at runtime Falco, the open source cloud-
native runtime security project,
is the de facto Kubernetes
threat detection engine.

Falco detects unexpected
application behavior and
alerts on threats at runtime.

Detect new vulnerabilities at runtime and tie the risky image to
a specific namespace, cluster, deployment, pod, etc.

Save time detecting anomalous activity
by extending Falco rules.

Improve DevOps productivity by using
ML based image profiling.

Gain deeper visibility into all network traffic across containers
running on hybrid/multi-cloud environments.

Validate runtime compliance with policies mapped to various
compliance standards (NIST, PCI, etc).

Respond faster via auto-remediation and alerting.

Speed up incident response with comprehensive audit trails
and deep forensics data.

To learn more about Sysdig Secure, visit the product page.

To learn more about securing Kubernetes download Kubernetes Security Guide.

https://sysdig.com/products/kubernetes-security/
https://github.com/open-policy-agent/gatekeeper
https://github.com/sysdiglabs/kube-psp-advisor
https://github.com/falcosecurity/falco
https://sysdig.com/products/kubernetes-security/
https://sysdig.com/resources/ebooks/kubernetes-security-guide/

